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CVace

In my search for a thesis topic, I wanted one that paralleled my

-graduate courses in the flight control sequence. The topic of recon-

figurable control laws was a perfect area for research. This is a new

area of study and meets the needs of future Air Force aircraft. This

study was proposed by the AFWAL/'light Dynamics Laboratory (FDL) and

investigates how the inherently redundant control surfaces of future

aircraft could be utilized after a surface failure by employing a

digital flight control system (DFCS).

This thesis provides an accurate aircraft model for further re-

search into the area of reconfigurable control laws. I a)so attempt to

show how a direct digital design method using the entire elgenstructure

assignment can be implemented to design a state feedback control law.

I want to express my gratitude to Dr. J. D'Azzo for his guidan, e

in the thesis development and unending effort in the reading of this

thesis for accuracy and completeness. 1V appreciation to Mr. Jerv

Jenkins, Flight Djnamics Laboratory (FDL), for lis assistance In

deriving the essential aircraft data that was needed to co , let this

report.

I also wish to thank my sponsor, Mr. Duene Rubin, tus (FX),

Professor C. H. Houpis, and Capt. J. Sillerthcrn for thei.r aoq-tnce

and suggestions.



Contents

Page

P,'eface . . . . . . . . . . . . . . . . . . . .

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . v

List of Symbols ..... . . . . . . . . . . . . .. . viii

Abstract . . . . .. ...... .. . . . . . . . . . . . . . . .. . xii
I. Introduction . . . . . . . . . . . . . . . . . . . . . . 1

BauKground . . . . . . . . . . . . . . . . . . . . . 1
Problem . . . . . 3
Scope . . . . . . . . . . . . . . . . . . . . . .. . 3
AsLumptions . ............... . . . .. 4

Approach and Presentation .......... . . . . . 4

II. The Aircraft 1bdol .................. 7

Introduction.. .................... 7
General Description ... ................. 7
System Model ...... . . ....... . . 8
Control Derivatives ................. . 94; Summary ...... ..................... . . 9

III. Theory of Entire Eigenstructure Assignment ... ....... 10

Introduction .i......... .................. 10
DiMtinct Eigenvalue Assignment .. ................ L
Multiple Eigenvalue Assignment ........... 17
Tracker ...... ...................... . 24
Continuous Simulation .................. .. 26
Sum ary ...... .. ... ... ... .. .... 26

IV. Design of Recon~igurable Multivariable Control Law . . . 28

Introduction ..... .. ................. ... 28
CESAM 1?dification ...... .............. . 29
Controllability ........ ................ ... 30
Control Law Design ....... ............... 33
Regulator Control Law ......... ............. 37
Sumary ........ .... .................... 90a

V. Conclusion and Recommendation ... .............. ... 97

Bibliography ..... .. ...................... ... 100

~iii



Contents

.1 Page

Appendix A, Aircraft Equations of' Lbtion . . . . . . . . . .. 102

Appendix B, Control Darivatives . . . . . . . . . . . . . . . 117

iv



List of Figures

Figure Page

1 Continuous-Time System Block Diagram . . . . . . . . . .. 12

2 Discrete-Time System Block Diagram . . . . . . . . .. . 12

3 Regulator Design Example Time Responses4a. XI(t) vs. t . . . . . . . . .. .. . . . . . is . 1

b. X2(t) vs. t ...... ...................... . 19

b X3(t) vs. t . . . . . . . . . . . . . . . . . . . . 20
d. y 1(t) vs. t . . . .. . . . . . . . . . .. . . . . . 21

e. y2(t) vs. t . .......... . . . . .. .. . . . 22

4 Control Surface Failure vs. Reconfigured Input (9) Matrix 34

5 Output Signals of (a) Original System and (b) Internally
Balanced System .. ....... .............. 39

6 Continuous-Time Simulation Responses for the Original
System Equations

" * a. Pitch Angle for 0.1 Rad Impulse 6hInput. ...... 41

b. Pitch Rate for 0.1 Rad Irpulse Sh, Input . . . . . 42

c. Roll Angle for 0.2 Rid Impulse 6a1 Input . . . . . 43

d. Roll Rate for 0.2 Rad Impulse 6a Input ......... . 44

e. Roll Angle for 0.1 Rad Impulse Shl Input ....... . 45

f. Roll Angle for 0.1 Rad Impulse 6hr Input . . . . . . 46

g. Sideslip Angle for 0.07 Rad Impulse 6r Input . . . . 47

h. Yaw Angle for 0.2 Rad Impulse 6al Input ........ ... 48

* 7 Continuous-Time Simulation Responses for the Balanced
* System Equat ions

a. Pitch Angle for 0.1 Red Impulse 6h, Input ... ..... 50

b. Pitch Rate for 0.1 Rad Impulse 6h1 Input . ..... ... 51

c. Roll Angle for 0.2 Rad Impulse 6e1 Input . ..... 52

d. Roll Rate for 0.2 Rad Impulse 6a1 Tnput ... ...... 53

e. Sideslip Angle for 0.07 Rad Impulse 6r Input .... 54

f. Yaw Angle for 0.07 Rad Impulse 6alnput .... ...... 55

ial



List of Figures

(Continued)

Figure Page

8 Continuous-Time Simulation Responses for the Reduced
Balanced System Equations

a. Pitch Angle for 0.1 Rad Impulse 6hl Input . . . . . . 56

b. Pitch Rate for 0.1 Rad Impulse 6h1 Input . . . . .. 57

c. Roll Angle for 0.2 Rad Impulse 6al Input . . . . . . 58

d. Roll Rate for 0.2 Rad Impulse Sal Input ...... . 59

e. Sideslip Angle for 0.07 Rad Impulse Sr Input . . . . 60

f. Yaw Angle for 0.07 Rad Impulse 6al Input . . . . . . 61

9 Control Surface Failure vs. Reconfigured Input (7) Matrix 62

lC State Feedback Block Diagram of the Original System . . . 64

11 State Feedback Block Diagram of the Balanced System . . . 64

12 Continuous-Time Simulation Responses for the Regulator
Design of the Original System

a. Pitch Angle, Initial Condition 0.1 Rad vs. t .... 69

b. Pitch Rite vs. t . . . . . . ......... . .. 70

c. 1.oll Angle, Initial Conditions 0.2 Rad vs. t . ... 71

d. Roll Rate vs. t ... ............. . . . . . . 72

e. Sideslip Angle vs. t . . . . ............ 73

f. Yaw Rate vs. t .... .................... 74

13 Continuous-Time Simulation Responses for the Regulator
Design of the Balanced System

a. Pitch Angle vs. t .................... 81

b. Pitch Rate vs. t ..... .. .................. '2

c. Roll Angle vs. t ... .................. ... 83

d. Roll Rate vs. t ..... ................. . 84

e. Sideslip Angle vs. t .... .............. . 85

f. Yaw Rate vs. t .... .............. . ... 86

vi



I L U U

List of Figures

(Continued)

• 4Figure Page

14 Continuous-Time Simulation Responses for the Regulator
Design of the Reduced Balanced System

a. Pitch Angle vs. t ... . . . . . . . . . . 91

b. Pitch Rate vs. t . . . . . . . . . . 92

I c. Roll Angle vs. t . . . . . . . . . . . 93

d. Roll Rate vs. t ... . . . . . . . . . . 94

e. Sideslip Angle vs t . . . . . ........... 95

f. Yaw Rate vs. t........ . . . . . 96

vii



List of Symbols

b (Wing) span ft

Mean aerodynamic (geometric) chord ft

, L Lift coefficient (airplane)

CD - Drag coefficient (airplane)
0D q

M C = MPitching moment coefficient

(airplane, planform)

Ct = --- Rolling moment coefficient
jSb

SCn NSb- Yawing moment coefficient

~F

F Side force coefficient

4CD -i

CD 5 D Variation of drag coefficient with deg 1
6 a control surface angle rad"

-l
CL L Variation of lift coefficient with deg,
Li h stabilizer angle rad

0L -l

C,- Variation of lift coefficient with deg-1,control surface angle rad

C Variation of Pitching moment co- rad -

Mc a efficient with angle of attack
(i.e. static longitudinal stability)

C 3 =rn Variation of pitching moment co- deg 1

ih h efficient with 3tabilizer angle rad
(i.e. longitudinal control power)

C - Variation of pitching moment co- degl,

C efficient with control surface angle rad

viii



C 3C Variation of rolling moment co- 
deg,

efficient with control surface rd

C 3C Variation of side force coefficient deg- ,

3C Variation of yawing moment co- deg "I

n efficient with control surface
angle

g Acceleration of gravity ft/sec2

Moments of inertia about X, Y, Z slug ft2
xx' yy zz axes respectively

I Product of inertia in XYZ system slug ft2

il{ Stabilizer incidence angle deg

L Dimensional variation of rolling sec-2

moment about Xs with sideslip angle

Lp Dimensional variation of rolling sec-1

moment about X. with roll rate

Lr Dimensional variation of rolling sec-1

moment about X with yaw rate

L6 Dimensional variation of rolling see- 2

moment about X. with stabilizer,
aileron, flap, rudder, and spoiler
where 6 = 6it' 'a' 6f' 6r' 's angle

m Mass (airplane) slugs

Mu  Dimensional variation of pitching ft-1 sec-1

noment with speed

Ma Dimensional variation of pitching sec- 2

moment with angle of attack

M& Dimensional variation of pitching sec-1

moment with rate of change of
angle of attack

Mq Dimensionul variation of pitching sec -t

moment with pitch rate

?A Dinensional variation of pitching sec -2

moment with a stabilizer, aileron,
fLap, rudder, spoiler where

6it, ~6 a 6, 6 s angle

ix



n Perturbed yawing moment ft lbs

N Dimensional variation of yawing sec 2

moment about Z. with sideslip angle

Np Dimensional variation of yawing sec -1

moment about Z with roll rate
Nr  Dimensional variation of yawing seco1

moment about Z. with yaw rate

Na Dimensional variation of yawing sec 2

moment about Z with stabilizer,
aileron, flap, rudder, and spoiler,
where 6 ,it' 6a' 6f' 6r' 6s

angle

p Perturbed roll rate (about x) rad/sec

Dynamic pressure lbs/ft 2

r Perturbed yaw rate rad/sec

S Surface area, Reference (wing) area ft2

. U1  Forward velocity (along X) steady ft/sec
4, state

u Perturbed forward velocity (along X) ft/see

v Perturbed side velocity ft/sec

w Perturbed downward velocity ft/sec

Xu  Dimensional variation of X-force sec "1

with speed

xa Dimensional variation of Xs-force ft/sec 2

* with angle of attack

Xa Dimensional variation of Xs-force ft/sec

with rate of change of angle of attack

X6  Dimensional variation of Xs-force ft/sec 2

with stabilizer, aileron, flap,
rudder, and spoiler where 6 = 6it'

6a, 6 f, 6r, 6s angle

Y Dimensional variation of Ys-force ft/sec 2

with sideslip angle

x



/ l

Y Dimensional variation of Y -force it/sec
[ with roll rate

Dimensional variation of Ys-for;e Vt/sec
with yaw rate

YS Dimensional variation of Ys-force ft/sec2

with stabilizer, aileron, flap
. rudder, and spoiler where S = 6it,

.a, 6f' Sr, 6e angle

Zu  Dimensional variation of Zs-force sec "!
with speed

Za Dimensional variation of Zs-force ft/sec2

with angle of attack

Z& Dimensional variation of Zs-force ft/sec
with rate of change of angle of
attack

Zq Dimensional variation of Zs-force ft/sea
with pitch rate

Z6  Dimensional variation of Zs-force ft/sec2

with stabilizer, aileron, flap,
rudder, and spoiler where 6 = 6 it
6a, 6f, Sr, as angle

0, 0i, 0 Pitch attitude angle (total, steady rad
state, perturbed)

0, * Bank (roll) angle (total, perturbed) rad

luAgle of attack rad

*Closed-loop eigenvalue

A Incremental value

6 Deflection of the jth surface
(See Appendix A)

Xs'$ Y s Z Stability axes system of coordinates

xi



j

Abstract

This thesis investigates control of an aircraft when there is a

primary control surface failure. The object of this study is to recon-

figure the remaining control surfaces to compensate for the additional

forces and moments generated by the inoperative control surface. To

study this flight control problem, a comprehensive aircraft model is

required which considers each control surface operating individually.

A six degree-of-freedom aircraft model is developed, including all

the individual control surfaces. A control surface input can produce

both a lateral and/or a longitudinal response. Thus, the equations of

motion cannot be declupled for the design of the control laws. The

coupling between the axes requires the derivation of several new non-

dimensional control derivatives. Using the geometrical properties of

the aircraft and the Digital Datcom computer prcgram, the needed con-

trol derivatives are derived.-

With a comprehensive aircraft model now availabl; he entire

eigenstructure assignment method is used to assign both the eigenvalues

and the eigenvectors to the closed-loop plant ~a-trix. This method is

used for the direct digital design of a multivariable discrete regula-

.! tor and tracker control lawi. The effect of increasic the number of

control inputs on the relative degree of controllability of the states

was determined by singular value decomposition.{

This thesis concludes that u direct digital design for reconfigur-

ing the multivariable control law is feasible. However, more wind

tunnel data is essential Lo derive the additional control derivatives

for a m!ore accurate aircraft model driven by individual control

surfaces. Further work is also necessary to perfect the assignment

ot' the closed-loop eigenvalues and eigenvectors.

xi
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DIRECT DIGITAL DESIGN METHOD FOR RECONFIGURABLE MULTIVARIABLE
CONTROL LAWS FOR THE A-7D DIGITAC II AIRCRAFT

.1 I. Introduction

-1

The increased flexibility ad miniaturization of digital computers

make it possible to use digital flight control systems (DFCS) on future

aircraft. These aircraft, whether they are inherently stable or

unstable, will have the normal sets of primary control surfaces

(ailerons, spoilers, flaps, and horizontal stabilizers), split into

independently controllable surfaces. The combination of a DFCS and

independently movable control surfaces suggest that a method for rede-

signing the control laws be developed. A set of reconfigured multi-

variable control laws could then be stored in the DFCS. In the event a

primary control surface becomes inoperative or blovm away due to battle

damage, a reconfigured multivariable control law would be implemented

by the DFCS upon the detection and isolation of the failure. The

design method developed in this thesis results in reconfigured multi-

variable control laws using state variable feedback and complete

eigenstructure assignment.

This chapter presents the background, problem, scope, assumptions

and approach associated with this thesis.

Background

Due to recent advancements in digital technology, there is improved

computational speed and lower cost for digital computers used in flight

control systems. By replacing the analog flight control system (AFCS)

with a DFC8, it has been shown one can achieve a faster reaction to an
19 input disturbance and increased flexibility in control surface

r1



utilization (Ref 10).tThe DFCS used in the A-7D Digitac II aircraft is an experimental
i test system which is being used to determine if the mission capabili-

4ties are improved when compared to the AFCS. The test program is also

intended to provide a technology base for future development of digital

and multimode flight control functions. The results of a 92 hour

flight test program conducted between February 1975 to March 1976

showed that the DFCS had the same desired high degree of rLliability

and flexibility as the AFCS and provided a significant improvement in

the aircraft handling qualities (Ref 10:9). Therefore, a DFCS with the

proper detection and isolation of the loss or failure cf the primary

control surface is capable of responding faster to the implementation

of a reconfigured control law.

Reconfiguration of the control laws implies reconfiguration of the

control surface utilization to compensate for a surface fpilure by

battle damage and uaing the remaining surfaces to control the aircraft.

* .In the past, this has been done manually by pilots with some success,

particularly in aircraft with a high degree of aerodynamic stability.

In the future, however, the loss or partial loss of a control surface

could result in an unrecoverable flight condition in inherently
unstable aircraft. The pilot would not have time to identify,

analyze, and take corrective action after a control surface failure.

Even in fly-by-viire (FB'.) controlled configured vehicles (CCV) of the

future, manual control vilthout automated assistance to achieve

effective reconfiguration does not appear feasible (Ref 3:114). Once

a reconiiigured control law is inplinpnted and co:.,rol of the aircraft

- is regained, the capabilities and response of the aircraft may be

2



degraded. Even if the degradation of the flying qualities only allows

Ivh, pilot a get home and land capability, the reconfiguration of the

control laws will have served its purpose of saving the pilot and

aircraft.

Since modern aircraft designs tend to have more movable control

surfaces, this suggests that more inherent redundancy is available if

these control surfaces can be properly used. With a DFCS and utiliza-

tion of the inherent redundancy of the control surfaces, it is feasible

to design reconfigurable control laws.

Problem

The Flight Dynamics Laboratc 'y is presently investigating the

feasibility of reconfiguring the aircraft flight control laws in the

event of a primary surface failure. For example, when the right

aileron or the left horizontal stabilizer become inoperative, addi-

tional forces and moments are generated that are not normally preseat.

The aileron commands would produce unwanted longitudinal forces and

moments, while stabilator commands would produce lateral-directional

inputs. The object of this thesis is to use the remaining control

surfaces to compensate for the inoperative control surface. To study

this flight problem, a comprehensive aircraft model Is required to

consider each control surface individually. At present, data is not

available for consideration of each individual control surface input

in each equation of motion.

S2ope

This investigation is limited to proposing a method for redesign-

ing the control laws of an aircraft after one of the primary control

3



surfaces becomes inoperative. This study determines which new dimen-
4sional control derivatives are required in the aircraft equations of

motion in order to ensure the coupling of the longitudinal and lateral

motion between the axes. This is accomplished by the use of additional

independent control surface inputs. Next, the entire eigenstructure

assignment is used to specify a method for redesigning the control laws.

Only continuous time simulation is used in evaluating the system

responses when checking a system configuration or control law.

Assumptions

A number of assumptions are made to simplify the complexity of

this problem. First, the aircraft is assumed to make small perturba-

Lions about a trimmed straight and level flight condition. Secondly,

the aircraft equations of motion developed are used in the stability

axis. Thirdly, the coefficients of the control derivatives are nor-

mally for a set of control surfaces, i.e., ailerons, flaps, horizontal

stabilizers, but only half the value of the control derivative

coefficient, with the proper sign is used when the control surface

set is split into two independent control surfaces, e.g., left and

JI right aileron.

Approach and Presentation

The design approach or method for reconfiguring the control laws

in this thesis looks at us;ing all control surfaces independently of

one another. This means that each aileron, each horizontal stabilizer,

each spoiler, and each flap is controlled independently. This allows

fu maximuwri utilization of all the surfaces whon a primary surface

fails. To ma ke use of Lhose additiunal control surfaces, the lateral



A

and longitudinal inputs are present in all the state equations of the

41 aircraft model. By doing so, one can compensate for a surface failure

by using state variable feedback. To accomplish this, additional
-4

control derivatives are required to realize the effects of the addi-

tional control inputs in each of the axes as the aircraft equations

are developed. With the additional control inputs, the degree of

controllability of the (A,B) matrix pair is examined to determine if a

state(s) requires a large magnitude of control input in order to

retain control of the aircraft after a surface failure.

With a controllable and, perhaps, a reduced order plant, the

reconfigured control law is designed using the complete eigenstructure

assignment (CESA) design technique. The interactive program CESA is

used to generate the state feedback design. This is an iterative

4process of assigning the closed-loop eigenvalues and selecting the

eigenvectors from the controllable subspace for the assigned eigen-

values. Then, a continuous simulation analysis of the closed-loop

system responses checks the reconeigured control law implemented.

This thesis is composed of five chapters. Chapter II develops the

aircraft model and references Appendices A for the derivation of the

aircraft equations of motion. The method used to obtain the additional

control derivatives is described in the Appendix B. Because each

segment of the control surface is operated independently, there is

coupling between the lateral and longi~udinal axes.. This coupling is

not encountered when the two ailerons, the two horizontal stabilizers,

and the two spoilers are controlled from the same control signal.

Chapter III presents the theory associated with entire eigenstructure

aosigrunent for distinct und multiple eigenvalue assignment. A



regulator design example is used to illustrate that the assigned

closed-loop eigenvalues and eigenvectors can be obtained from a

generated control law. Chapter IV looks at the modifications required

for the interactive program CESA. Also discussed are the problems

encountered with the controllability of the (A,B) matrix pair and the

solutions used to obtain a higher degree of controllability. Chapter V

presents the conclusions and recommendations.

4
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II. The Aircraft Model

Introduction

-An accurate model is desirable for any control design method;

however, limitations and assumptions are necessary to derive a model

that is manageable and accurate. This thesis uses a six degree-of-

freedom (D-O-F) aircraft model. The model includes the effect of in-
,I

dividual control surfaces, many of which are traditionally considered

to act together as a set. For example, this thesis considers the

right and left horizontal stabilizer as independent control surfaces.

A linear model is iormed by linearizing the nonlinear 6 D-O-F equations

of motion about a nominal operating point or flight condition.

This chapter presents a general description of the A-7D aircraft,

a discussion on the linearLzed aircraft equations of motion and a dis-

Pussion on the new control derivatives required for the aircraft model.

General Description

The A-7D is a single seat, land based, light attack aircraft with

mcderately swept wing and tail surfaces. The fuselage is 45.4 feet

long with an w-derslung nose inlet duct, and is poiered by a single

TF41-A-l engine (Ref 8:3.1). The wing area is 375 square feet and the

mean geometric chord (.:n.g.c.) is 10.8 feet. The horizontal stabilizer

is a slab tail with 56.2 square feet of area and a ia.g.c. of 6.1 feet.

The distance from 25 percent of the %ing m.g.c. to 25 percent of the

tail's m.g.c. is 16.2 feet. At a cruise configuration, the aircraft

weight is 25,238 pounds, and is flying at 0.6 Mach at an altitude of

15,000 feet. Details of this flight condition are given in

(Ref 20:A.5).

7



~System Ubdel
The aircraft model in this thesis uses the 6 D-O-F equations of

! motion for an accurate model without approximations. The development

of the aircraft equations is in Appendix A. In the derivation of the

aircraft model, a method is presented to resolve the problem of how to

achieve control of the lateral-directional motion with a longitudinal

control surface and the control of the longitudinal motion with a

lateral control surface. This is a primary requirement in order to

accomplish the reconfiguration of the control law after the loss of a

primary control surface.

To achieve this control, the dimensional control derivatives not

normally associated with either the lateral-directional or longitudi-

nal axes must be considered. This coupling between the axes is

4realized through the non-dimenolonal control derivatives associated

with the force and moment equations control suraface inputs for the non-

traditional surfaces. For example, Equation (1) is a lateral-

direccional input coupled into a longitudinal control derivative

equation by D

r

46

r m

lhe idea cf .e abQ"°' .x aple applies to all %he new dimensional

control derlvatives in the lateral-directional and longitudinal con-

trol our'e .ce inputs of the aircraft equations of motion as shovn in

Appendix A.

8



By including the individual control surfaces, the equations cannot

be decoupled to separately describe the longitudinal and lateral-

directional motion. One now requires knowledge of the non-dimensional

control derivatives for these control surfaces for which data is not

usually available. The next section provides a method for deriving

this data.

Control Derivatives

To successfully carry out the coupling between the axes requires

the derivation of several non-dimensional control derivatives for the

lateral-directional and longitudinal control inputs of the equations of

motion. The control derivatives that are not given in (Ref 11) or

(Re. 1) are derived in Appendix B. These new control derivatives were

derived by digital DATCOM, (Ref 14), and conventional aerodynamic

techniques. For example; the rudder was modeled as an asymmetrical

wing and XD was derived from digital DATCOn data. This is explained

r
in more detail in Appendix B.

Sumnary

In this chapter, a physical description of the A-7D is presented.

Then, a development of the aircraft equations of motion L presented to

intrcduce a inethod that achieves coupling of the lateral and longitud-

Inal motion into the opposite axes by using all the individual control

surfaces and new non-dimensional control derivatives for the respective

axes. With a comprehensive system model, the next step is to present a

method to design a reconfigurable multivariable control law using the

complete eigerstructure assignment design teclnique.

9



III. Theory of Entire Eigenstructure Assignment

Introduction

The design method in this thesis for obtaining the reconfigured

control laws uses the technique of entire eigenstructure assignment

for multi-input multi-output (LUM ) control systems. The assignment of

the entire eigenstructure, consisting of both eigenvalues and eigen-

vectors, is illustrated by application to a system design in which

distinct eigenvalues are assigned. The use of multiple eigenvalue

assignment is particularly important for sampled-data systems since it

can produce closed-loop system responses having finite settling times.

Fully exploiting the properties of a multivariable system make it a

Dowerful design tool for the synthesis of sampled-data controllers.

This enables the synthesis of a sampled-data control system which con-

sists of a continuous-time plant and a digital controller that produces

a control input signal which is piecewise-constant for each sampling

period.

This chapter presents a comprehensive review of the above design

technique which assigns both the eigenvalue spectrum and eigenvectors

associated for the closed-loop plant matrix. First, the principles of

the entire eigenstructure are developed for the case of distinct

eigenvalues and then a regulator is synthesized to illustrate these

principles. Then, the principles for multiple eigenvalue assignment

are presented. This is followed by applying the theory to systems,

aug:ented with integrators for the design of a tracker controller and

a discu:;sion on continuous simulation (Ref 6).

10



Distinct Eigenvalue Assignment

The linear multivariable t.me-invariant vector matrix equations

governing the plant and its output in the continuous-time domain have

the forms

x xt) = A (t) + B u(t) (2)

y(t) = Cx(t) (3)

and is illustrated in Figure 1. To form the sampled-data system, a

linear time invariant discrete-time MIAID system is described by the

matrix difference equation (Ref 6:491)

x(kT+T) % F(T) x(kT) + G(T) u(kT) (4)

y(kT) = C x(kT) (5)

where T is the sampling time and is shovn in Figure 2. The control law

for applying state-variable feedback for the discrete-time system is

u(kT) - KXT). (6)

The purpose in applying state feedback is to assign a closed-loop

self-conjuqate distinct eigenvalue spectrum

u (F GK) A2P' ,--- An 1 (7)

and the associated set of eigenvectors

{X A , X --- , Xn A . (8)

The eigenvalues and eigenvectors f"or the closed-loop system are related

t1
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It'

by the equation

ii

which may be put in the form

r [F- ll, G] [Xj ' 0 (i 1, 2, --- , n) (10)

where

i =KXi (11)

and where [X , T is a vector which lies in the kernel or null

space of the matrix:

S(O)  [F-AiI1,G] (I = 1, 2, --- , n) (1t2)

It follows froi Equation (11) that te ruired state feedback matrix K

- Is given by

_ = , [ ,x --- , xI X -, X A2 X X n

K = Qx-l (13)

The matrix K 4s real and simultuneously as:ign:3 both the desired set of

eigenvalue. and the aosigned set of associated eigenvectors.

Equation (11) may also be solved directly without the requirement to

obtain the inverse matrix sho'.n in Equation (13) (Ret' 22). The ker

( i) (- 1, 2, --- , n) imposes constr-ints on the elgenvector(s)

13



that may be associated with the assigned eigenvalue Xi (1 1, 2,---, n)

by identifying a subspace within which the eigenvector

x A i = , 2, ---, n) must be located. The eigenvectors must be

linearly independent and self-conjugate so that the inverse matrix X

in Equation (13) exists and is real. Within these constraints, there

is freedom in assigning the eigenstructure of the closed-loop plant

matrix F+GK. This is illustrated with the following example (Ref 6:13).

Example U1-1.

A continuous system is represented by the following state and out-

put equations:

i(t) = 0 0 1 x(t)+ 1 0 u(t)

-6 ,-1, 0 1

0,0, (14)

The design of the regulator in this example is carried out with the

. interactive computer program CESA (Ref 8). The discrete-time domain

*representation is obtained with a sampling period of T = 1 second.

The eigenvectors lie in the null space of the matrix S(X) of Equation

(12).

[0.7474-4, 0.4530 , 0.0735 , 0.3261, 0.0421

S() 0.4410 ,-0.0611-X, 0.0121 ,0.4530, 0.0735
0.0723 ,-0.5735 , -0.1334-A, -1.0610, 0.0121] (15)

The open-loop imnpled-d-ita elgenvalue spectrum for the discrete

14



plant matrix F is

a(F) {0.50, 0.135 , 0.368}. (16)

The feedback matrix K is to be computed so that the closed-loop system

is asymptotically stable and has the eigenvalue spectrum

a(F+GK) = (0,05, 0.1, 0.15) . (17)

The size of the null space generated is dependent upon the colwn

dimension of the input matrix. In this example, the null space

dimension is 2 as is showm for the specified e(genvalues.

0.11152 -0.34692

-0.33380 0.68090

ker S(0.05) span 1 0

0.00005 -033305

L 0 1 (18)

0.19090 -0.32759

-0.43770 0.57450

ker S(O.iO) span 1 0

0.00364 -0.27684

0 1 (19)

S0. 27612 -0.32393

-0.52460 0.50770

ker S(0.15) span 1 , 0

-0.00229 -0.24100

0 L 1 (20)

From each null space, one eigenvector is selected ensu'ing that

the requirement for linear independence is met and also satisfying

Equation (10). Thus, making the permissible assignment from

15



Equations (18), (19), and (20) of

-0.34692 0.19090 0.27612

-4r 0.68090 -0.43770 -0.52460

L -0.3330 ---------------- - -------

itX 2 X--335 0.00364 -0.00229 (1J LO j _O _ (21 )

The required feedback matrix is computed from Equation (13) as

K -0.33305 0.00364 -0.0022] -0.34692 0.19090 0.2761]2 1

01

.127, 3.062, 0.7432] (22)

The resulting closed-loop sampled-data plant matrix is

0.4992, 0.2253, 0.0237

F.GK -0.7487, -0.3315, -0.0459

1.2240, 0.6238, 0.1392 (23)

The closed-loop plant matrix has the required eigenvalue spectrum of

Equation (16) and the assigned set of eigenvectors of Equation (21), as

4the eigenvqlues to be altered or to be left imchinged, as required.

Even when an eigenvalue is left unchanged, the associated eigenvector

iiay be reassigned within the appropriate subspace.

The continuous-time responses of the states for the closed-loop

sampled-data system are plotted in Figure 3 for the initial conditions

16
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x(o) j-1.5

1' (24)

The plant states and outputs essentially reach steady-state in approxi-

mately three sampling periods.

Multiple Eigenvalue Assignment

The assignment of multiple eigenvalues is especially useful for

sampled-data systems since the assignment of all eigenvalues to the

origin, i.e., Xi O(i = 1, 2, ---n), results in time-optimal or finite

settling time responses. When it is desired to assign multiple eigen-

values, the associated eigenvectors are related by the equation

(F+G)Xi x: x (i = 1, 2, --- p<n). (25)

There p is the nunber of different eigenvalues and, therefore, only

linearly independent eigenvectors may be generated from the null space

(Ref 6:2.23, 25). Depending upon the desired algebraic multiplicity,

Mi<n, and the nu.nber of subblocks desired in the jordan normal form of

J " the closed-loop matrix for each assigned eigenvalue A, it may be

necessary to generate chains of generalized eigenvectors Xi+k using

the equation

(F*GK) X.+k - Xi k+X*+k_ (1, 2, --- , il) (26)

17
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ii
This equation may be put in the form

[F.X i1,G]  X Ai ji j

~(mjiJ)

i~~ 1j- , 2, .. ki lp I 2, -- ,p). (27)

! This generates k I strings of vectors associated with the eigenvalue Xi'

where x (l'J) is the ith vector in the jth string which is of length

mi since the ker S(Xi) occupies a subspace of size equal to m, the

number of controls.

Equation (26) allows the generation of eigenvector/generalized

eigenvector chains from the original null spac,. given by Equation (12)

so that the size of the largest control Index. dj, of the open-loop

system may be retained for the closed-loop system. This is possible

if' (1) the eigenvalue spectrum of the closed-loop system is assigned

to the origin, (2) the combined length of the first eigenvector/

generalized eigenvector chain is set equal to dj. In this case, the

outputs are equal to the inputs after a finite number of sampling

times, that is, the system is deadbeat. This allows a deadbeat

response to take place in q sampling times, where q is the order of

the minimal polynomial of the closed-loop system and is equal to the

largest control index of pair (F,G) (Ref 7:19).

The foregoing theory of assigning eigervalues and selection of

eienvectors to the design of a regulator is further applied to the

tracker design by augmentation of the system with integrators.

2
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Tracker

The synthesis of a tracking system which is required to track a

command input, uses proportional plus integral state feedback in multi-

variable control systems. This assures zero steady-state error for

step inputs for the tracking system if the augmented system remains

controllable (Ref 4). The controllable multivariable plant governed

by discrete-time matrix difference and output equations are

x(kT+T) = Fx(kT) + Gu(kT) (28)

and

j y(kT) = Cx(kT) (29)

The system is augmented by the introduction of a discrete-time vector

integrator and comparator

z(kT+T) = z(kT) + v(kT) -y(kT) (30)

Where the pxl output vector y(kT) is required to track the pxl piece-

wise constant command input vector v(kT). The nwnber of command inputs

is less than or equal to the number of outputs. Inserting Equation (29)

into (30) yields

z(kT+T) -Cx(kT) + z(kT) + v(kT) (31)

Thu3, from Equation (28) and (31), the discrete composite opon-

loop augmented tracking system is

[z(kT+''i[ F ,l0z(kT) [] (kT) ]0  v (32

z(kT+T)J , IpJ( kT uO+ L p (32)
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Where I is a pxp identity matrix and p is the number of integrators
p

A 41,used.
-4

The proportional plus integral control law is

u(kT) = Kx(kT) + Klz(kT) (33)

where K is a mxn matrix, K, is a mxp matrix, and m<n. The closed-loop

tracking system is represented by

rx(kT+T)1 r rF+GK, GK1r x(kT)1 o
Lz(kT+T)J I 1-c , ii L z(kT)j 1 ~ T (34)

and

I

yk) [,01Lz(kT)J (35)

The output matrix [C , O] in Equation (35) is augmented with zeros for

z(kT), since integrator outputs (Ref 6) are not system outputs.

1hen K and K, are generated tnat produce an asymptotically stable

system, the closed-loop eigenvalues are within the unit circle. The

intc r:ator stat then reach constant values with a constant command

v(kT), therefore,

lira [z(kT+T) -z(kT)l 0 (36)

k->*o

and from Equation (30),

llm [y(kT) -v(kT)] 0

k-xe (37)
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Therefore, the desired state outputs will track the command inputs

with zero steady-state error.

-4

Continuous Simulation

Since the aircraft plant is a continuous system, it is necessary

to perform a continuous simulation of the closed-loop system in order

to evaluate the effectiveness of the cigital control law. This is

necessary because the complete closed-loop system is partly discrete

and partly continuous. Therefore, the system is simulated using the

continuous state space representation with piecewise-constant control

inputs.

In order to determine the continuous-timo solution to the state

space iepresentation of the linear time invariant system, a discrete

approximation to the exact solution is used. This method is used to

discretize the plant, as explained in the preceding section on sampled

data transformation, with a samrling time that is less than or equal

to TSAMP/12, where TSALM is the sampling time of the digital computer

used in the control law (Ref 7:24). The state and output responses

are obtained from one 'sampling time to the next with the control input

u(kT) held constent. Then, the control input is updated at the next

sampling time and the process is continued. Therefore, it is possible

to determine the system responses between the sampling times. This

siirulaton is incorporated in the computer program CESA (Ref 8).

Sumiary

The use of the entire elgenslructure assignment design technique

for multivaciable control systems is possible by specifying the

de;ired entire eigenstructure of a controllable closed-loop system.
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There is complete freedom in assigning the eigenvalues and the

corresponding eigenvectors must be assigned within a specified null

space. Then, a state-variable feedback control law is determined for

the discrete-time domain system.

This design method can be applied to regulators where it is

- desired to bring the system back to the steady state condition. Also,

the system nan be augmented with integrators for a tracker de6ign'I
where the output tracks a command input vector with zero steady-state

error.

2
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IV. Multivariable Control Law Design

Introduction

b-' The reconfiguration of the control laws for an aircraft must com-

* pens-Ate for the forces and moments generated by a partial primary

control surface failure. The design was achieved by using the complete

eigenstructure assignment design technique for a multivariable system.

First, it was necessary to derive the new control derivatives for the

additional independently variable control surface inputs in the six

degree-of-freedom (DOF) aircraft equations of motion. In accomplishing

the design, not only must the controllability of the (A,B) matrix pair

be determined, but the degree of controllability is also important.

The degree of controllability for this multivariable system is Impor-

tant since this determines the magnitude of the feedback matrix
A

coefficients and the magnitude of the plecewise-constant control input

signals. Should there be a state with a low degree of controllability,

it is possible to remove that state from the model representation if

the response of' the original system is not affected.

This chapter presents the molification that was required to make

the interactive proutrn CESA compatible with the control input matrix

'o the aircraft model. Then the degree of controllability of the

system' is examined by using a method that balances the system trices

in a new state coordin-ite system, allowing for state reduction, if

desired. Having established the degree of controllability of the

model v'hich was doveloped, the design s hemie for a multivariable

dlscrete-tiLe tracker and regulator is presented.
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CESA Modification

The interactive computer program CESA provides the user with an

interactive tool to design the control laws for regulators, disturb-

ance rejectors, and trackers. The progrwin has the capability for

designing a multivariable control law and then evaluating the system

responses by continuous or discrete simulation. Should the control

law be unacceptable, it can be redesigned without having to reenter

the system matrices and sampling times. However, the closed-loop

eigenvalue spectrum and elgenvector assigrunent must be respecified.

Thus, the system data is stored in memory for an interactive design

process (Ref 8:157).

A program modification was required due to the dimension limita-

clons on the continuous and discrete-time control input matrices.

Also, other matrices and vectors used in the design process in the

program are dependent upon the number of control inputs. This thesis

required that the control inp it itrix dimension be increased in size

to an r.x xn matrix, where m is eIght and this does not Include the failed

surface. This allows [or the use of the ieft and right control sur-

face input of the unit horlzontal. tail (UHT), ailerons, spoilers,

flaps 'ind the single -vertical tail rudder. To accompli:,h the modifi-

cation, a thorough tuiderstandling of the theory, computer program

overlay structure, the programs and subroutines used in the design,

and the simulation of the discrete state feedback control law

generated for the A-7T) aircraft model v:a, ", necessary.

Once the arguments of the arrays and ve-.tors .ere updated, the

program-w 'waL' recompiled for use on the ALD Cybor coi:puL'l at the Air

Force .' :iht Aeronautical Lbor:atories (AF.':AL) u tnig the following
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external libraries: IMSL, EISPACK, CCAUX, and CCPLOT56X. To verify

and validate the updated version, the third-order system example of

Chapter III and the aircraft model of Appendix A were used during

testing. Then, if further corrections or parameter changes were

necessary, it became an iterative process until all necessary changes

were made and validated to complete the program modification.

Once the interactive program modifications were completed, the

effect of increasing the number of control inputs on the degree of

controllability of the (A,B) matrix pair was investigated.

Controllability

It is reemphasized that the interactive program CESA checks the

controllability of the (F,G) matrix pair, but not the degree of

controllability of the plant states. One is interested in the degree

of controllabiLity when using state feedback because it does affect

the overall gain of the state feedback matrix. If the state feedback

matrix produces a multivariable control law that applies large control

inputs to the servo actuators, then the physical limits of the actua-

*! tors are exceeded. Therefore, removing a state of low controllability

from the aircraft model improves (reduces) the average gain of the

feedback matrix. To improve the controllability of the model, two

approaches are available. One is to determine the magnitude of the

singular values of the HINF matrix that nre generated by the Nbore

balancing algorithm (Ref 12:18-20). This ha8 been implemented in the

AFIT program 1,1I1,1O (Ref 13). The second approach is to reduce the

number of' control inputs to only those control surface inputs that

have the greatest effect on the aircraft response.
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The Moore algorithm (Ref 15, 16) defines a state space coordinate

system which orders the state variables with respect to the controlla-

bility and observability properties, i.e., the most to the least

controllable, observable state. This is done by transforming the

system into an internally balanced state coordinate system, where

x = Tx' (38)

Using the linear transformation matrix (Ref 16)

T -1 U E
00 H (39)

where U = left singular vector of the observability grammian0

70 = diagonal matrix ont'.ining singular values of the

observability granimian

U left singular vectors of the 1INF matrix
H N

H E UTU EINF o0cc

E diagonal matrix containing sing;ular values of the

ItIN matrix

U c left sinjular vectors of the controllability gra.rmian
~c

E diagonal matrix containing singular values of the

controllability grnr'mh an

This tranjformation to the internAllj balanced state coordinate system

resoilts in the following equations:

"(t) A'x t) +B1u(t)

y(t) C'x'(t) (40)
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where AA = T AT, B = T B, and CA = CT . However, to retain the

physical inputs and output positions of the original system, which are

4
the important physically measuirable quantities desired, the B" input

matrix is premultiplied by ' and the C' output matrix is post multi-

plied by T- , so that the B" input and C" output matrices are ordered
0 0

as in the original system. Then, the state and output equations are,

S'(t) = A'x'(t)+ BDu(t)

y(t) CA x'(t) (41)
0

Since the internally balanced state coordinate system orders the

states with respect to the controllability and observability proper-

ties, then deletion of the bottom state(s) of the balanced matrix

representation is, in effect, stripping away the least controllable/

observable redundant state(s). The following is an example of state

reduction from a third-order to an approximately equivalent second-

order system:

A'= 102" = 7 " ,C [7,5)41

0 0
5 6 9 (42)

1 = R 7 0 R (43)

where A'j, BO , and C are the reduced matrices. This does not imply

that rIodel reduction is necessary to use the internally balanced

matrico3 generated by More's al;oritLm effec-lvely. The balanced

matricoc! can be used as generated, the advantage being that the

3



mathematical properties of the plant matrix are improved. An example

is that the condition number of the aircraft model's plant matrix is

reduced from 140653 to 127 when in the balanced form.

A method has beer, presented which determines the degree of con-

trollability of the states and permits model reduction of the original

system, if desired. The next step in the design method for reconfig-

urable multivariable control laws is to develop a state feedback matrix

for the aircraft model of Appendix A for a tracker and regulator con-

troller iusing the entire eigenstructure assignment design technique.

Control Law Design

A linear multivariable discrete-time tracker or regulator con-

troller is designed to reconfigure the control surface response to

compensate for the failure of a primary control surface. This section

discusses the problems and solutions encountered with the method for

the tracker and regulator controller design.

The tracker design is desired because the output tracks a

commanded input. With a primary control surface failure, once it is

detected and isolated by a fault detection system, a control law is

implemented from a family of control lawo in the digital flight con-

Vtrol system (DFCS) to reconfigure the response of the remaining

independently operating control surfaces. The reconfigured tracker

control law would then follow the command inputs, removing the unde-

sired response caused by the failed surface. The open-loop Equatioh

(32) for the tracker design is composed of Equations (A-22, A-23, A-24,

and A-25) augmented with the integrator and comparator of Equation (31).
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iniput 6h 6h 6 r 6 a 6 S f 6
failure 1h r 1 r S r ' 1 r

UHT1  0 X X X X X X X X

UHT X 0 X X X X X X X
r

Rudder X X 0 X X X X X X

Aileron X X X 0 X X X X X

Aileron X X X X 0 X X X Xr
Spoiler X X X t X X 0 X X X

Spoilerr X X X X X X 0 X X

)Control Surfaces 1 - left, r - right
0 - failed surface X - normal operation

Figure 4. Control Surface Failure Vs. Reconfigured
Input (9) Matrix

Since the selected output was required to track four command inputs,

four integrators were used. This dosign can be used for the failure of

any primary control surface by reconfiguring the control law to use a

set of control inputs as shown in Figure 4.

The desired tracker -ontrol law is

u(kT) = Kx(kT) + K1 z(kT) (44)

where the feedback matrix [K, K1 ] is computed so that the closed-loop

system is asytoti.ally stalue ana has the selected eigenvalue

spectrum for the tracker containing 4 integrators, see (A-25),

u[F + G (K, Kj)] = {0.01, 0.03, 0.05, 0.06, 0.07, 0.08,
_. o 0.1, 0.15, 0.2, ,0.4, 0.6}. (45)

The state feedbick matrix is related to the eigenvalues and associated
3



eigenvectors of the closed-loop system by

F 0 (1 1, 2, ... , n) (46)

V where

W= K X (i 1, 2, ... , n) (47)

and

'Xi (1 1- , 2p ... , n) (48)

is a vector that lies in the null space of the matrix

S (X) - [F -XiG] (i = 1, 2, ... , n) (49)

Then the feedback matrix is given as (Ref 6:17)

K [ 1, 2, ... , Wn] [XI, X2, ... , Xn] -I

K Q (50)

As stated In Chapter III, the eigenvectors must lie within the ker

S(Xi) oC the specified null space. Also, the columns of the modal

natrix X must be independent for the matrix X- 1 o" Equation (50) to

exist. Also, if the matrix X of Equation (50) is il!-conittioned, an

inverse cannot be generated, but an erroneous inverse will be produced,
-:

i.e., XX-I / I. This is a computer computational problem.

The initial tracker design on the interactive program CESA did

generate a control law that was formed using an incorrect X-1. That

35
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tracker control law had a very high average gain of approximately 109

and the closed-loop specified eigenvalues were not contained in the

characteristic equation of the closed-loop matrix [F+GK]. This was a

result of the problem areas mentioned previously: (1) degree of

controllability of the (F,G) matrix pair, and (2) an ill-conditioned

matrix X of Equotion (50). This result was not anticipated and, at

first, it was not Imown if the subroutines and programs in CESA, the

external reference, or the problems stated above caused the high gains

and non-reproduction of the closed-loop eigenvalues. Extensive testing

was done on the CESA subroutines since a larger number of control

variables were being used which called for an even larger augmented

tracking matrix of Equation (32). Also, the external reference

libraries were tested to ensure that the null spaces, eigenvalues, and

4-l being generated were correct. During the testing it was discovered

that other available library routines can calculate the feedback

matrix K, i.e., solving for the K matrix for the linear algebraic

equation having the form XK = Q. The CESA program and the external

references functioned as intended and it was determined that the

I difficulty lay in the ill-conditioned X Ti,.atrix of Equation (47).

The controllability -I:ntrix associated with the (F,G) matrix pair

must have full rank. A necessary condition for the system to be

controllable is that the rank of the controllability matrix be equal

to n, the dimension of the plant matrix, where the controllability

* matrix is defined as

= [G, FG, ... , F 1 (51)

, . However, the e1ee of controllability of the states is unknown. To
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11 drive a state to the desired steady state condition, the magnitude of

Kthe feedback gain is dependent upon the controllability of that state.

The feedback matrix is related to the eigenvectors which determine the

-4, magnitude of the transient responses. The controllability problem w.s

further investigated by considering the regulator design. The regu"A-

.!tor does not use integrators to augment the system and involves working

directly with the plant matrix and the control inputs in determining

the degree of controllability of the (A,B) matrix pair.

Regulator Control Law

For the remainder of this study, the right aileron is the surface

failuru, n,, it is assumed to be locked in a neutral position. Before

the regulator design was implemcnted, the Moore internally balancing

algorithm was applied to Equatioas (A-22, A-23, and A-26) using the

I interactive program IMI.I (Ref 13). The time responses of the original,

balanced and reduced balanced system were compared to ensure that a

true reoresentation of the model was retained. Once this was estab-

lished, a regulator multivaria,)le control law was designed for the

three systems. Then the time 2esponses of the three systems were

compared.

The degree of controllability of the states was determined from

the singular values of the K matrix by means of the ',oore algorithm.

A juideline to model reducti( n is the magnitude and grouping of the

firvular values. The singul>r values of the H matrix were computed

for impulse input balancing fter a finite time of 20 seconds. A

finLte time waz used due to ',he spiral divergence pole in the right

37
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half S-plane. The singular values for the plant matrix are,

14.896

02 = 13.617

03 = 10.569

G4 = 9.300

05 
= 8.851

a6 = 3.945

07 = 3.278

08 = 2.500 (52)

These singular values of the plant indicate that at least one state

corresponding to 08 and possibly two others, 06 and 07 could be removed

due to a low degree of controllability. The least controllable state

is represented by the value for o. To establish if the balanced

matrices affect the time response of the system, the original system

was compared with the balanced and reduced balanced system. As

illustrated in Figure 5, the output responses of each system are

appro.cimatety equal. Recall that C'T"I is C and T B' is B which

Insures' the physical outputs and inputs remain the same ts the

original system.

The eigenvalues of the original plant are, as follows:

X, 2 r-0.4148E-2 + j 0.8209E-1 phugoid

X3,4 - -0.4358 + j 2.040 dutch roll

X5,6 - -0.7949 + j 2.848 short period

X7  = 0.4934E-I spiral divergence

X8  = -2.878 roll subsidence (53)

'The time re.-;ponse plots for the original system, Figure 6, indicate
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Figre . Otpu ,ilgnahs 0of (a) Original System
and (b) Internailly Balanced S)ystem
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that some form of compensation or feedback control is necessary to

correct for the unstable spiral divergence mode present in the pitch

and roll angle responses. The pitch response of Figure 6a is for an

.4 impulse of 0.1 rad and has a maximum negative pitch angle of 0.245 rad

and an initial settling time of 6 seconds before slowly diverging with

a constant positive pitch angle. The roll response of Figure 6c has an

initial settling time of 11 seconds before a constant roll angle

divergence takes over. To illustrate that the horizontal stabilizer

UHT does function on the model as left and right independent control

surfaces, Figures 6e and 6f show that the left stabilizer produces a

positive roll and the right stabilizer a negative roll with a 0.1 rad

impulse input. This illustrates the coupling between the axes as a

result of longitudinal inputs into the lateral-directional equation of

A motion.

After balancing the system state equations with the Moore algo-

rithm, the A', B-o , and C' Q matrices are as shown in Equation (A-25

through A-27). The eigenvalues for the A' matrix remain the same as

for the physical plant A matrix Equation (53) and are as follows:

X l 2 : -0,4148E-2 + j 0.8209E-1

X3)4 = -0.4358 + j 2.040

X5 6 = -0.7949 + j 2.848

X7 = 0.4934E-1

x8  = -2.878 (54)

where X1 to X8 correspond to the same characteristic 'oots of the ori-

ginal system. Figure 7 illustrates that the time response plots of the

system equations with internally balanced matrices remained the same as

the original system. The yaw a gle response of Figure 7f for a 0.07 rad
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impulse input results in the same form of response as for a 0.2 rad

impulse input, Figure 6h, as in the original system but of a different

magnitude due to the impulse input. The difference between the original

and balanced matrices is that the states of the system are ordered by

their degree of controllability. Thus, the redundant states can be

removed as long as the system characteristics are not destroyed.

The A' matrix of Equation (A-25) was reduced to seven states, as

illustrated in Equations (42 and 43) and as indicated by the singular

values of Equation (52). The characteristic eigenvalues of the reduced

internally balanced system are:

Al 2 = -0.4142E-3 + J o.8225E-i phugoid

A3 4 = -0.4731 + j 1.959 dutch roll

A5 6 = -0.8050 + j 2.825 short period

X7  = 0.4935E-1 spiral divergence (55)

The eigenvalues of the reduced balanced system have shifted a small

arrouiit and the roll subsidence mcde is no longer present. The reduced

system time response plots are showm in Figure 8.

The pitch and pitch rate time response of Figures 8a and 8b re-

mrained the same as for the original system. However, tae roll angle of

Figuare 8c shows a phase change, an increase in magitude from a max of

0.024 radian to 0.13 radian, and the settling time decreased by 0.5

seconds. These changes are attributed to the shifting of the poles and

zeros of the /S transfer function. In Figure 8d, the roll rate

settlinkg time was increased from approximately 6 sec to 10 sec, while

the rnagNitude deereased and the dut(-h roll oscillation decreased. The

f y'tw rate, Figure Sf, alto indicutes a change in phase and magnitude.
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Even with the system response changes pointed out, the reduced balanced

I jsystem still retains all the characteristics of the aircraft model.

Therefore, the removal of a state with a low degree of controllability

does not affect the output response of this aircraft model.

Having established the degree of controllability of the states by

the Moore algorithm, the number of control inputs was reduced to improve

the controllability of the (A, B) matrix pair. A reconfigured multi-

variable control law for a regulator controller was developed for the

original, balanced, and reduced balanced systems using a sampling time

of k".5 seconds.

The family of reconfigured control inputs to compensate for a

failed surface in the regulator design is shown in Figure 9.

input h 3 h r - a '3 a Sfailure h r a1  a r 6l r

fallr r r

UHT 0 X X X X X X

UHT X 0 X X X X X
r

-'Rudder X X 0 X X X X

Aileron I  X X X 0 X X X

Aileron X X X X 0 X X

Spoiler 1  X X X X X 0 X

S Spoilerr  X X X X X X1 0

AConitrol surfaces I left r - right
0 - failed surface X - nor:.ul operation

Fi, ure 9. Control Surt ,e Failure Vs.
Reconf iLurad Input (7) 'Itrix
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A block diagram for the state variable feedback regulator con-

troller is sbown in Figure 10 in which all the variables are vector

quantities.

The regulator design uses Equations (A-20) and (A-21) except for

the flap inputs, and (A-24). The outputs are q, 6, R, p, r, and *.

* I The feedback matrix K of Equation (47) is computed so that the closed-

loop original system is asymptotically stable and has the closed-loop

eigenvalue spectrum.

o(F + GK) = {0.001, 0.002, 0.03, 0.3, 0.4, 0.625, 0.95, 0.99) (56)

The vectors assigned from the null space of Equation (49) for each i

are:

( 0 i wL ~ A , L A _w 8 ( 5 7 )

'3
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whr -lie x matrix of eigenvectors is

1.000 0. 0.

,) 0 973E-01 -0.31-2E-01 0.

0. 0. 1348E-01

X .'.3257E-02 -0. 5443E-02 -0.6069E-02

192E-02 0.2839 -0.1677

. 0. 0

L0. 0. 1.000 -0.3124

.1715E-03 6.1335E-03 -0.2810 0.1575

0. 0. 0. 0.

0.8531 0. 3117E-01 -0.2891E-02 0.1693E-02

-0.4633 0.1902E-01 -0.2430E-02 0.1535E-02

0.4125 -0.1490E-01 .2315E-01 -0.7605E-01

0.7000 -0.7364E-03 -0.364 0.6055

0. 0. 1.000 0.

1.000 0.6591E-04 0.3950E-02 -0.2L27E-01

-0.5388 0. -0.2653E-01 1.000 (58)

and the associated , rntrix is

0.4294 0.4592 -0.6622 0.1458

10.6545 -0.3835 0.5430 -0.1698

-. 1273 0.9,J)'I-01 0.2618 -0.9987E-01

-0.4618 0.3591 -0.5707 0.

0. 0. 0. 0.

L0.4_o. 0. 0. 1.000

-0.5741 -0.38311-01 O . 3030E-02 -0.8611

0. 0. 0. 021593

04853 -' .1491E-01 -0.1055 0.3299

0.1503 0. 5032Z-01 0. 0.

0. 1.000 0. 0.

0. 0. 0. 0. (59)
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The size of the null space and the row dimension of the SI matrix is
4..

i dependent upon the number of control inputs. The computed feedback

ma rix K of Equation (50) for the original system was

0.4714 -0.7043 -0.5807 0.3532

-0.3755 -0.3578 0.4705 -0.1745

K = 0.1000 -0.1523 0.2659E-01 0.7001

0.3585 0.1414 -1.237 -3,476

-0.162/ 15.98 -6.894 -42.42

-0.1064 2.852 4.820 12.54

-0.1556E-01 -0.29572-01 -0.9141 -0,8416

0.5861 0.95422-01 0.1055 0.5018

0.3425 -0.714,21-01 0.2144 0.1805

, 4 1.329 0.2368 -1.252 -1.095

-1.199 0.7815 -0.9945E-01 -2.519

-8.155 -1.241 4.150 5.967 (60)

,6

'3

16



with an average gain of 2.97. The resulting closed-loop sampled-data

plant matrix is

0. 2000E-02 -0.1705E-12 0. 2842E-13 O.4547E-12

-0.9337E-02 0.5041 0.1754 -0.2796E-01

O.1018E-02 O.9657E-01 -0.2298 -0.8865

[F+GKI= -0.1351E-02 -0.6097E-01 0.2059 0.7611

0. 6413E-03 0. 1243E-01 0.1492E-01 0. 3888E-0l

0.3197E-13 0.17 76E-13 0.7105E-13 0.3553E-12

0.2198E-02 -0.3059E-01 -0.6962E-01 -0.1904

O. 5137E-03 -0.9197E-02 -0.1965E-01 -0. 5355E-01

0. 2842E-13 -0. 1065E-13 -0. 2842E-13 -0.9948E-13

-0.1748E-01 -0. 2436E-02 0.2227E-01 0.9482E-02

-0.4761E-01 0. 1046E-01 0. 1352E-02 -0. 3685E-01

-0.1562E-01 0.2336E-02 0.1241E-02 -0.8076E-02

0.7357 -0.2537E-01 -0.1566 0.1536

-0.1990E-12 0.9500 0.1279E-12 0.1181E-12

0.6788 0,8965E-01 -0.2919 -0.4526

0.2030 . 0.2595E-01 0.'.'769 0.8668 (61)

* The closed-loop plant matrix has the specified eigenvalue spectrum of

Equation (58).

A continuous-tie sinulation of the closed-loop system is carried

out using the rcgu.lator control Ia'.i de.signed and the following initial

conditions, [0(o) r 0.1 and ¢(o) = 0.2];

T -- [0 0 0 .1 0 0 0 .2] (62)

"he response3 of the aircraft to the initial condition of Equation (62)
a'ter the :ailure of the ri,,ht aileron for the original system are

!',.m in FI 71ure 12. In enoral, the ziircraft resoonses to the

67j



multivariable control law are stcble, settling time is faster, and

oscillations of the short period, dutch roll, and the spiral divergenceImodes were-removed from the respective outputs.
The eigenvalue spectrum of this regulator design spans the Z-plane

from 0.001 to 0.99. Even though the fast eigenvalues responses have

settled, the slower eigenvalues responses still drive the system with

small piecewise-constant control input changes between the sampling

period. The magnitude of the control inputs did not overdrive the

system after the initial sampling period. inus, a relatively smooth

transition between the sampling periods from the initial conditions to

the settling time of z.bout 4 sec for the pitch angle Figure 12a and the

pitch rate Figure 12b. The fast settling time of the roll angle in

Figure 12c ind cates that the initial control inputs for some of the

control surfaces were large. Consequently, * was forced to approxi-

'mately zero in less than half a sampling period. The left aileron and

spoilers did exceed their physical limits. Also, the spoilers had a

negative and positive deflection; this is impossible since the spoilers

only have a negative deflection (CCW) on the A-7D. The simulation

routine in CESA is for a linear system and control surface limitations

are not recognized. The roll rate response of Figure 12d is well

within the maximum roll rate of 200 deg/sec (Ref 1). A small initial

sideslip angle (0.0017 rad), Figuo 12e, and yavz rate (-.012 rad),

Figure 12f, does exist, but is negligible.

The block diagram for the internally balanced state-variable

feedback controller is shown in Figure 11. The transformed state

~68 ('I,
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equation for the balanced system is, as follows:

i-(t) (T-AT)x-(t) + (T'B)u(t) (63)

y(t) = CT x-(t) (64)

and the control law in the discrete-time domain is

u(kt) = K'x'(kt) (65)

The actual magnitude of the control input is required in order to

determine if the designed control law exceeds the physical limits of

the actuators. Therefore, since x'(kt) T- 1 x(kt),

u(kt) = K'T "I x(kt) Kx(kt) (66)

(I Also, the initial condition inputs for the balanced system must be

transformed into the new coordinate system by

x'(o) = T- x(o) (67)

Proceeding with the regulator design for the internally balanced

system using Equation (A-25 through A-27), the closed-loop eigenvalue

spectrum is

a(F +GoK) = {0.005, 0.007, 0.009, 0.01, 0.03, 0.05, 0.07, 0.09} (68)

Assigning the eigenvector for each X of' Equation (59), the matrix X'

of eigenvectors is



-.2264E-01 -0.7282E-01 -0.3186E-02 0.3118

-0.2095E-02 -0.1041 -0.9799E-02 0.1621

-0.1516 -0.1033E-01 -0.3112E-02 -0.1016E-01

x' 0.2754 0.1845E-Ul 0.1480E-01 0.2166E-01

0. 1.000 0. 0.

0.7869 0.9943E-02 -0.3865E-01 0.1089

1.000 0. 0. 0.

0. 0. 0. 1.000

-0.1738E-03 0. 3050 0.3684E-03 -0.2891E-02

-0.9793E-03 0.1577 0.9896E-03 -0.1042E-01

-0.2651E-0 , -0.1012E-01 0.9387E-03 -0.4218E-02

-0. 5001E-03 0.2096E-01 -0.3472E-02 0.1800E-01

0. 0. 0. 0.

0.1549E-02 0.1077 0.7428E-02 -0.3664E-01

0. 0. 0. 0.

0. 1.000 0. 0. (69)

' and the associated 0 matrix is

0.8855 0.3501E-01 -1.241 -0.2361E-01

0 0. 0. 1.000 0.

0.1126 0.4050 -0.2651 0.9257E-01

0.3665 0.1383 -0.9529 -0.2482

0. 0. 0. 0.

0. 0. 0. 0.

-0. 44'5E-01 -0.1168E-01 -0.7149E-02 -1.238

0. 0. 0. 1.000

0.4621E-02 0.9389E-01 -0.1168E-01 -0.2644

-0. 8 5 P - 1 -0.1959 0. 6394E-01 -0.9519

0. 0. 1.00 0.

1.000 0. 0. 0. (70)
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The feedback matrix of Equation (65)

-131.8 213.0 -403.8 -79.73

93.20 -157.2 376.8 85.95

K= -28.07 48.09 -131.6 -30.82

-93.77 129.5 -64.27 7.069

402.0 -725.2 2233. 495.0

S249.8 -281.3 -1757. -650.0

7.978 -9.034 -27.82 5.146

:: ::-5.473 8.K870 24.02 t 2.573
1 .960 -4. 226 -7.283 .8373
5. 601 7. 432 -14.77 6. 376

! !-22.72 160.5 65. 12 -13.27

,-25.46 -56.75 -48.79 -29.86J (71)

i! The average gain for Equation (71) is 199. Using the inverse of the

transformation matrix T, the matrix K given in Equation (66) is

-11

i i "obtained % herp T" is

77



3-1310E-5 -1.8741E-2 3-1528E-3 2.2038E-2

-1.5149E-5 1.6794E-2 -1.9646E-3 -1.8162E-2

-2.5606E-3 4.:3495E-1 -4.6050E-3 -4.5933E-1

T 5.6238E-4 -7.7507E-1. 1.1906E-1 9.1296E-1
-3.4657E-5 1.8281E-2 -2.9889E-3 -2.0732E-2

-1. 6022E-4 -5. 1974E-4 2 .9203E-1 -7. 4909E-2.12.8776E-4 -1.0776 9.3580E-2 1.8823E-1
t L- -l4248E-5 -4-0350E-2 -3.6914E-2 -1-4945E-2

I-7.8563E-2 6.2237E-2 4.6185E-1 1.0295
-2.4268E 3.4092E-2 1.8894E-1 -1-8377

-7.9595E-3 4.1505E.-4 -3.6800E-3 1.7059E-2

-3 .8466E-2 -9.9916E-5 7.4374E-3 -8. 2169E-2

46-4536E-1 -3.4859E-2 6.8651E-1 9.1750E-2

l.2719E-l i.4930E-2 2.9657E-2 3,3226E-3

-8-3743E-2 -9.2893E-3 -1.6389E-2 -8-4078E-3

11.3260 1.8622E-1 3.6654E-1 -2.2451E-2 (72)

IThis results In the actual feedback matrix K as illustrated in Equation
(66). Then the ac~tual controls can be analyzed to ensure that they do

not exceed the physical limits of' the actuators.

0.9734 -77.87 2.817 101.1

1-0.9011 67.00 -1.570 -85.69

K 0.3159 -24.20 0.2630 29.75

0.1591 -13.74 3.788 28.01I
-5.396 497.7 12.30 -550.8

_4-133 -216.5 -15.08 220.3

-487.1 -0.2977 -12.18 -520.4

360.0 0.2104 7.765 377.8

-110.0 0.5744E-01 -1.053 -.112.7

-292.4 -0.2085 -11.91 -334.7

1674. 1.287 27.34 1708.

642.8 0.2244 34.55 823.1_ (73)



Using the K' feedback matrix, the closed-loop plant matrix has the

specified eigenvalues of Equation (68):

-2.118 0.4608 0.2956E-01 0.1507

-1.094 0.2927 -0.9719E-01 -0.1276

0. 8791E-01 -0. 1925E-01 0. 2463E-01 -0. 8952E-01

[F'+GK] -0.2155 0.3584E-01 0.6555E-01 0.4149
0

-0. 5578E-12 0. 4317E-12 -0. 1007E-11 0. 1473E-11

-0.6021 0.1319 -0.6959E-01 -0.7137

0. 9511E-12 -0. 1619E-11 0. 3949E-11 0. 7017."--13

-6.994 1.482 0.1815 0.7074

j -0.1102 0.1138 -0.7759E-01 0.5732
-0-4885E-01 -0.2275E-01 0.6369E-01 0.2996

*0. 6697E-02 -0. 3791E-01 0. 5543E-01 -0. 1807E-01

*1-0.2005E-01 0.1588 -0.2230 0,3598E-01

0.7000E-02 0.3382E-12 -0-9993E-12 0.1066E-13

-0.1553E-01. -0.02425 0.3947 0.2086

-0. 7200E-13 -0. 2984E-12 0. 5100E-02 -0.2665E-14

-0.3699 0.4572 -0.3656 1.887 (74)

Before the continuous-time simulation is carried out, the initial

conditions of Equation (62) are transformed by Equation (67) to

-0.04218

x'(o) = 0.07486

0.01628

-6. 826E-3

0.817141

-5.9S/48E-3J (75)

The conitinuous time vlots of the balanced system are shown In

Figure 13. The eigenvalue spectrum, Equation (68), for this regulator
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:4A

design was located close to the origin in the Z-plane. These eigen-

Cvalues have a faster transient time than the previous design. Thus,

ri• the control law realized drives the response of the system harder

Ibetween the sampling periods to a settling time of about 4 sec causing
I what appears to be the short period or dutch roll oscillation. However,

that is not the case. The increased magnitude of the piecewise-constant

I control inputs are overdriving the system, producing the oscillations

and not the aircraft modes. An important result in all the balanced

i responses is that the initial conditions are approximately the same as

for the original system. Thus, the transformation of Equation (67) on

the initial conditions and The internally balanced matrices do represent

the original system. The responses differ from the original system

because of a different eigenvalue spectrum and eigenvectors. In

general, disregarding the overshoots produced by the increased constant

piecewise-constant inputs, the responses, Figure 13, do show an improve-

ment in the settling time of the system.

The internally balanced matrices of Equation (A-25 through 27) were

reduced to seven states as illustrated in Equation (43). Using the

following closed-loop eigenvalue spectrum:

o(Fj+G}jK ) = {0005, 0.007, 0.009, 0.01, 0.03, 0.05, 0.07} (76)

The eigenvectors of Equation (57) were assigned for each X of Equation

(76) and resulted in the following eigenvector matrix X'

80
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0.2293 0.5702E-02 -0.5106 -0.5323

0.1166 -0.5313E-01 -0.3096 -0. 3148

X, -0.1502 -0.1484E-01 -0.7938E-02 -0.5111E-02

0.2752 0.1838E-01 0.1839E-01 0.3865E-02

' . 1.000 0. 0.

0.8248 0.2442E-01 -0.1227 -0.0793E-01

1.000 0. 0. 0.

-0.4551E-01 -0.5428 0.3549E-01

-0.2850E-01 -0.3238 0.2201E-01

-0.7559E-03 -0.6274E-02 0.1376E-02

-0.169E-03 0. 6174E-02 -0. 3136E-02

0. 0. 0.

-0. 5911E-02 -0.8523E-01 0.1282E-01

0. 0. 0. (77)

and the assoeciated matrix Q of the Equation (59) is

4 0.7783 -0.j428E-02 -0.9561 0.2996

0. 0. 1.000 0.

0.1013 0.4008 -0.2206 0.4709E-01

0. 0. 0. 1.000

0. 0. 0. 0.

0. 0. 0. 0.

-0. I0'72"-Ol 0.3042 -0.2672E-Oi

0. 0. 0.

0.9154--02 0. 332E-C1 -014 -01

0. 1.000 0.

0. 0. 1.000

1.000 0. 0. (78)-;
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The K matrix of Equation (65) is

-106.5 176.1 -294.3 23.13

78.12 -131.7 -)9.4 12.99

Kjjr -23.28 39.44 -105.1 -5.832
-68.78 105.8 -0.4973 66.33

329.0 -588.0 1810. 97.25

L 144.7 -181.6 -2025. -899.4

5.335 29.11 -69.93

-3.452 -18.26 53.91

1.250 5.071 -17.52

4.506 29.13 -38.92

-11.28 12.40 221.1

-21.29 -147.6 53.05 (79)

The closed-]cop discrete plant matrix of the reduced balanced

syste!n for the assgi ed eigenvalues is

-0.7759,1. (- 6 5 -6.184 -5.Q64

-0.4539 1.054 -3.565 -3.491

0. 949SE-02 -0. 1083E-ci 0. 52e"4E-01 -0. 584 3E-01

-0.6 /81-O1 0.1005 -0.2890 0.6867',-O1

0O.5D, -, -0.134E-12 0. 4164L- 1I 0.1756E-11

0.2, 04. -01. 0..j -Oi -.0.2270 -0.9062

L4 u.932E-12 -0.1353E-lI 0.3867E-1] 0.5089E-12

0. L881 -2.174 2.433

0. 1121 -1.294 1.462

. -,243-0 -1 4.'/"42-01

0.,Ou-- .. .. ,cE- .3 -0 0/ ,-,-1-12

S0.2 E-1 -0.3303 0.4PII
:" -0. L 1,-,E-1 3 -0. 3!9'/E-12 O. ,MOE-02 (O
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The initial condition vector x'(o) of Equation (75) was reduced by re-

moval of the last element for the continuous-time simulation. Figure

14 is the time response plot for the reduced balanced system and is

compared to the previous cases for improved or deteriorated responses.

The regulator design for the reduced balanced system exhibits

approximately the same initial conditions as the two previous designs.

Due to the fast transient responses of the eigenvalue spectrum, the

feedback matrix K produces a control law that overdrives the system

during the first two sampling periods only. The pitch angle, Figure

14a, differs from Figure 13b only little in the initial response and

the settling time is decreased from 4.0 sec to 1.5 sec since the control

input induced oscillation is not present. For the remainder of the

• outputs, the settling time decreased from 4.0 see to 2.5 see. By re-

'g moving the roll subsidence state, which had a low degree of controlla-

bility, the aircraft model was not degraded. Thus, the magnitude of

the control inputs was decreased sufficiently to remove the oscillation

caused by the control inputs of the balanced system.

To transform the reduced balanced feedback matrix (Kj) in the new

coordinate system back to the original coordinate system the following

* transformation is applied. Firs+ the reduced balanced state vector is

obtained as follows,

xR(t) = [Inj, n-j, 0n-j, j] x'(t) (81)

*where j is the number of balanced states to be removed, n is the

dimension or the original plant matrix, I is an identity matrix, and

*i is tt.e number of zero (0) vectors. The state equations for the reduced
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.1 balanced system are,

-, (t)= A x(t) + B' u(t) (82)
0R

where the matrices of Equation (82) are obtained as shown in Equation

(43) and xi eR7. The eigenvalues of the reduced model are shifted,

hopefully only by a small amount and still retaining the characteris-

tics of the model. The control law for the reduced system is

,u~t) = S(t) XR{t) (83)

where Kj is of dimension wx(n-J), and w is the column dimension of the

control input matrix. The transformation of the control law to the bal-

anced system, using Equation (81) is

Su(t) = Ki [I n-J, n-J, 0 n-jI J] x'(t) (84)

To obtain the actual K matrix in the original state coordinate system,

x' = T-ix is substituted into Equation (84) to form

u(t) = ( Inj, n J nj T- x(t) (85)

Therefore,

u(t) = Kwxn x(t) (86)

once the transformation of the reduced balanced system control law to

the original system is completed. The time responses produced by the

transformed control law can then be compared to the original time

responses. This allows one to investigate the effects of using a

reduced feedback matrix, transformed back into the original state

90



coordinate system in the control laws.

~Summary

SSmBy increasing the control input capabilities of Lhe CESA arrays

,and determining the degree of controllability of the aircraft states,

a multivariable control law was designed. The time response plot, of

the original, and internally balanced sysLtems proved that the state

coordinate system can be changed without inodifyin Ge sy.tem

characteristics. The control laws designed for '. sampled data

regulator and tracker illustrate the capabilIies of the ertire eigen-

structure assicrunent design meshod. The assign-,ment of the eigenvalue

spectrum and associated elgenvoctors points out their effect on the

closed-loop system :is shokn in the tire response ploL.-, for the

different regulator cases. Due to the l-re dif'evcnce in th. eigen-

value spectra used in the r-gulator designs, the system responses

exhibit an acceptable settLe'n- tirne and 'i decrease In th- overshoo'ts.

The desirable feedback matrix should have un average gain about 1.0,

due to the eigewnvetowrs selected, and ,"(uld constitute an acceptable

. control law.
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V. Conclusions and Recommendations

Conclusions

Reconfigulring the control surfaces response to compensate for a

primary surface failure reqaired a comprehensive aircraft model.

Using the left and right control surfaces as independently maneuverable

inputs in the six degree-of-freedom aircraft equations of motion, an

ascurate aircraft model was developeu in Chapter II. The importance

of coupling all the control surface inputs to both the longitudinal

and lateral axes is illustrated by the time responses for the uncon-

troiled original system in Chapter III. Therefore, the equations of

motion cannot be decoupled when a sampled-data controller is designed.

Inclusion of this coupliig between the axes required the derivation of

several new non-dimensional control derivatives. The new dimensional

C control derivatives were then calculated for use in the aircraft

model. Using the geometrical properties of the aircraft and the

Digital Datcom computer program, the needed control derivatives were

derived as shown in Appendix B.

A comprehensive review of entire elgenstructure assignment is

presented in Chapter III. The use of this method for designing

multivarlable control laws is feasible since there is complete freedom

in assi,-ning the elgenvalues and the eigenvectors musL be within

specified sub spaces. 'Nith a comprehensive model now available, the

entire igenstructure assigrment method was used to assign both thd

etgenvalues and eigenvectors to the closed-loop plant matrix by

synthesizing a state variable feedback control lavi for a regulator

and tracker. Using the interactive computer program CESA, a airect
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4 digital design of both a sampled-data regulator and tracker were

attempted in Chapter IV. Considering the number of control inputs,

the degree of controllability of the states was established by the

singular value decomposition of the HINF matrix by means of Moore's

algorithm for internally balanced matrices. Model reduction is then

possible by removing the state(s) of low controllability as indicated

by the magnitude of the singular values.

With the degree of controllability of the system determined, the

*, regulator control law design should be carried out first to uncover

any mathematical problems with a new system. The regulator designs

!* for reconfiguring the control surfaces of this aircraft model results

in a zero steady state error. However, the "proper" selection of the

eigenvectors wouDd improve the magnitude of the initial control inputs

so that the physical limits of the actuator are not exceeded. Were it

not for the time limit at this point in the thesis, it would be possible

to reimplement the tracker design for a reconfigurable control law.

4 Plots of the regulator designs are included in this thesis.

Recommendations

The aircraft model developed in this thesis and the attempt to

design a sampled-data controller by the entire eigenstructure assign-

ment method paves the way for further studies in the area of recon-

figurable control laws. Areas that need further investigation and

development are:

1. During the design of an aircraft, more extensive wind tunnel

testinig is necessary to provide the data for the additional control
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derivatives in order to obtain a more accurate aircraft model driven by

individual control surfaces.

2. The development of the criteria for the selection of the

eigenvalues and elgenvectors assigned to the closed-loop plant matrix

] jto insure the design of a realizable multivariable control law. This

includes the further study of the entire eigenstructure assignment

method to modify the control surface input to compensate for a parti-

cular control surface failure.

3. The development of a fault and isolation detection system that

monitors the control surface responses. This would determine which

control surface is not following the command inputs. This may be

accomplished by means of a Kalman filter.

4. The investigation of a digital design method that uses the

( plant. end the measurement (sensor) outputs as feedback which are

compared with the input commands for the design of an error-actuated

I controller as it ,:,ould apply to reconfigurable tracker control laws.

5. The modification of the interactive program CESA to facilitate
.4

the transformation of the reduced feedback balanced matrix to the

original state coordinate systen. Then apply the transformed state

feedback to the original system and coxpare its response with that of

*the reduced system.

L
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APPENDIX A

Introduction

This appendix presents a model of the A-7D ueing the linearized

aircraft equations of motion. Coupling between the longitudinal and

the lateral-directional axes is through the control surfaces described

earlier. The linearized differential equations of motions are then

used to derive the continuous state space model.

Equations of Motion

The lateral-directional and longitudinal equations are developed

with coupling between the axes through the non-traditional control

inputs (Ref 4). These equations assume:

1. X, Y, and Z axes are in the plane of symaetry and the origin

of the axes is at the center of gravity of the aircraft.

2. The mass of the aircraft is constant.

3. The aircraft is a rigid body.

4. The earth is an inertial reference.

5. The perturbations from equilibrium are small.

6. The flow is quasisteady (Ref 2). The linearized longitudinal

equations of motion are as follows:

i -gecose, + X u + X a + X.; + + 6r + X a
u a a 6itit XS dr  X a

6+ X 6  (A-l)
6 s  

+  6f f

-Ulq-gsin + Zuu + Zaa + Z + Zqq +Z6 i +Z 6r

. + Z 6a Z 6 + Z f6f (A-2)
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The dimensional stability derivatives 
for he aircraft model are

given in Table I. Excluded are the dimensional control derivatives

Iwhich are derived in Appendix B. All of the derivatives relating to

angles are per radian measure (Ref 21). 
The continuous state space of

the model is now formed.

j Continuous State Space

)The aircraft model has eight state variables and the 
control

inputs are defined as pairs as shown 
below. When used as independent

control surfaces, Sit becomes the (left) and (right) horizontal
stai3i~rTh ~beoms he 6hI (lih r n

stabilizer, The remaining sets of control surfaces, 
except the rudder,

are split into the left and right control 
surface when the multi-

variable control laws are designed. The states are:

1. u Perturbation Forward Velocity

2. a Perturbation Angle of Attack

3. q Perturbation Pitch Rate

04. Perturbation Pitch Angle

B 5 Pertur bation Sideslip

4 6. p Perturbation Roll Rate

7. r Perturbation Yaw Rate

83. P Perturbation Roll Angle

The control inputs are:

1. 6it Horizontal Stabilizer Deflection

2. Rudder Deflection

3 Aileron Deflection

4. 6 Spof!er Deflection

4, 5. 6f-  Flap Deflection

4
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W The dimensional stability derivatives for' The aircraft model are

given in Table I. Excluded are the dimensional control derivatives

which are derived in Appendix B. All of the derivatives relating to

angles are per radian measure (Ref 21). The continuous state space of

the model is now formed.

Continuous State Space

The aircraft model has eight state variables and the control

inputs are defined as pairs as shown below. When used as independent

control surfaces, 6it becomes the 6 (left) and 6hr (right) horizontal

stabilizer. The remaining sets of control surfaces, except the rudder,

are split into the left and right control surface when the multi-

variable control laws are designed. The states are:

1. u Perturbation Forward Velocity

2. a Perturbation Angle of Attack

3. q Perturbation Pitch Rate

4j 4. 6 Perturbation Pitch Angle

* 5. 3 Pertilrbation Sideslip

6. p Perturbation Roll Rate

7. r Perturbation Yaw Rate

8. * Perturbation Roll Angle

The control inputs are:

1. 6it Horizontal Stubiiizer Deflection

2. L Rudder Deflection~r

3. 6 Aileron Deflectiona

4. 6 Svoiler DeflectionS -

5. 6f Flap Deflection4T
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I ~TABLE I

Cruise ConfigurationdDimensional Stability Derivatives
X -0.00829*

x a 5.47751

g 32.2 ft/sec
2

uZ -0.11324

Z -632.63786

z 0.0

Mu  
0.00036

-8.15547

-0.11565

: M -0.59329

Y -102.69611

Y 0.56427

Y 1.35163

L -25.73501

L -3.00146
p
L 0.90217

N 3.99.1.75

N -o.067
$ p

N -0.5096

xmits rad-I

Flijht cnditions for' Thble I are given in Appenrlix B, Table I.
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lk The continuous state space equations of motion are derived from

Equations (A-I - A-6). The state equations are then developed for use

with the CESA interactive computer program CESA, so that a discrete-

time state variable feedback control law can be designed.

To derive the state space equations, one must solve for the time

I derivatives of u, a, q, 6, 8, r, p, and 0. This derivation assumes Xa,

Zc, and Zq are zero (Ref 21). Also, for a steady level Ilight condi-

tion, U1 = constant, V, 
= 0, W, 0, using the stability axis, 01 = 0,

40 = 0, and PI Q, = R, =0.

Equation (A-l) solved for u:

- + X u + X + X
X 5rr XS a 6 s 6 6 (A-9)

a s f

Equation (A-2) is solved for a:

Letting w = ua implies w = UIa + u I! where ucq 0. Sihce aat

equilibrium is zero, therefore, vi U, a...bstitutIng Into Equation

(A-2) yields

Uj : u + Z a + Z 6it 6It + Zg 6r 
U Uq + ZZ a Z 66

z6 a  + 6 s 6 f (A-10)

Dividing through by U1 yields

1 u u+Za+Z 6 6.i Z 6
U1  a 6 r r

+ Z6a Z s Z 6(A- )
a s f

106



SII (A Equation (A-3) is solved for q.

++I q = Mud1 + M + A q( + MitA8  *' )A6r~r,

Im1 + M a + 8. Me)L

8 M a 6a +6f (A-12)
a I f

To express q in terms of Ulu, q Equation (A-I) is substituted

into Equation (A-12) for ;, then regrouping the terms;

=Muu + Maa + I(q + Zu U + ZO ) + Iqq

Ul Ul

++M 8 + \AZ + M +
-y it 8 it 8r r a a

UlU 1  U1

+ + , z + M + M 6 + 6 f

+U \ ul (A-13)

The final equation needed in the longitudinal state 
space representation

is

=q (A-14)

Equation (A-5) is solved for 0:

Let 4 = U1 A, which is substituted into Equation (A-4)

S /u + +

+1 [V 6iit +  6r a+ Y + 6 + Y f f

U it r Ya s fj (A-15)
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I4

Equation (A-6) is solved for r:

The EL -Ixz r and to simplify use, a new set of primed stability

I
XX

derivatives (Ref 6) are used:

I
xz

LA=L +1I N an
i i x Ni and

1I2

I (I z)+ Lxxz

1I -i Ix

l-xz

xx Z ) (A-16)

i it  ,where I represents 8, p, r, 6 6a 6r' 6s' and 6f.

t

S=L8 +Lp +r +Liit+Lr r

"4
+ La6a + LS L ff (A-17)

Equation (A-7) is solved for p:

The EN r -Ixz p and simplify Equation (A-6) as above.

I
zz

p NB + Nr + tii- s N'r
a p r 6 it it 6 r6

+ NV 6 + Ng' 63 + 14, 6.
6a 6s s f

a s 6 f (A-18)

The last equution for the lateral axis equution is:
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; =p + rtanG,

The equations for u, a, q, 0, 8, r, p, and * are put in the matrix

form

SAx + Bu (A-20)

-* where

X X 0 -g 0 0 0 0 u
XU a

1 z 1 0 0 0 0 0 A

+Mz M 0 0 0 0 0 y q-

( ue ) (I I) q

e 0 0 1 0 0 0 0 0 0

X-1 - - -X - - - - - - - - -
r0 0 0 0 N' N' N' 0 r

U0 0 0 0 0 0 1 0

itr a X f
4it r a a 6f r

z z +1.z +M

A /t , t, 6  V 6_-U1  U U1  UT

0 0 0 0 0

y y y6it r a 6 'S s

Ljit L r Lia L6s  Lif Ufj
Njit N ' N -

0 0 0 0 0 (A-21)
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I The A matrix for the system is, as follows:

-0.8290E-2 5.478 0. -32.20

-0.1784E-3 -0.9966 1.000 0

0.3806E-3 -8.155 -0.5933 0

H 0 0 1.000 0A=

0 0 0 0

0 0 0 0

0 0 0 0 a

0 0 0 0

0 0 0 0 q40 0 0 0

-0.1618 0.8900E-3 -0.9979 0.5072E-1 8

-26.23 -3.008 0.9610 0 p

4.547 0.5678E-1 -0.5310 0 r

0 1.000 0 (A-22)

IJO
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S

With a 6ar failure the Bmetrix is:

-16.43 -16.43 -7.506 0.

-0.6730E-1 -0.6730E-1 0 -0.4788E-1

-7.955 -7.955 0 1.860

B* 0 0 0 0

0 0 0.4530E-1 -0.5816E-2

. -8.040 8.040 5.967 17.19

0.6014 -0.6014 -5.198 0.2985E-1

4 0 0 0 0

260 -1.260 -9.3423 -9.3423 6h,

-0.9707E-2 -0.9707E-2 -0.9351E-1 -0.9351E-1 [hr

-0.2013 -0.2013 -1.0488 -1.0488 Sr

0 0 0 0 Sal

O.1424E-2 -0.1424E-2 0 0 6s1

-1.099 1.099 -5.3212 5.3212 Sr

-0.5335E-i 0.5335E-I 0.1571 -0.1571 6f!

0 0 0 0 frn

*See page 116. (A-23)

where the failed right aileron control input is missing. The sign con-

vention for the control surface is: positive 
6h, Sal, and Sf is trailing

lap" edge down; positive 6r is trailing edge left; positive 6. is spoiler up.11



For the regulator design the left and right flap inputs are dropped to

resolve the controllability and eigenvector problems associated with

the tracker design.

The tracker output equation is:

u

0-1010000 Q

q
0 0001000 

Cx -

0 0000010 

0 0000001 Pi
' ,r

, * ,(A-24)

and the desired command input for the tracker is:

1 =-a :z Y

0 0
v(t) -

0 =r

o -- * (A-25)

where Y = O-a is the flight path angle. The regulaLor output matrix C

, * is:

, 00100000 u

00010000 
~q

00001000 0
Cx

00000100
p

0 00 00 00 1 0 (-2r
0000000o1 (A-26)
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The following equations are for the internally ialtanced matrices

of the system generated by )DM (Ref 13). The plant matrix is:

-0.1695 -0. 2289E-2 -0.1297E-1 0.1447E-1

-0.2146 -0.7590E-4 -0.6469E-2 0.1587E-1

O.2143E-1 O.9030E-2 O.5677E-1 0.1149

A= -0.3819E-1 -0.2011E-l -0.7662E-1 -0.8726E-1

-1.663 -1.004 -0.2189E-1 0.5202E-1

-0.6214E-1 -0.2490E-1 0.2280 -0.5543

-0. 1076E-1 -0.2002E-2 0.3949E-1 -0.2044

-0.2895 -0.1751 0.1538E-1 -0.3358E-1

j1.718 -0. 5732E-1 0.4076E-1 -0.4794

C.. 1.025 -0.3078E-1 0.1075E-1 -0.2376

0.2811E-1 -0.3121E-1 0.7517E-2 -0.8604E-2

-0.4492E-1 0.1865 0.2124 0.7503E-2

-0.7259 0.1813 -0.1018 1.360

-0.2004E-1 -1.450 2.701 0.4078E-l

0.3793E-1 -3.051 -0.193 0.3932

-0.2407 -0.3918 -0.1836 -2.784 (A-27)
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The B'0 input imtrix is-

-0.2470 0.1983 -2.033

-0.1457 0.1752 -0.8886

0.3737 0.3848 0.4047E-1

-0.8989 -0.9095 -0.4522E-1

0 0.7163 -0.6700 -3.747

-2.423 -2.218 -0.5811E-1

-0.6118 -0.7415 0.2381E-1

-0.9802 1.573 0.7340

0.9265E-1 1.091 -0.9363E-1

0.5125E-1 0.6013 -0.5074E-1 a
0.8547E-2 -0.9944E-1 0.8005E-2 hr

-0.1681E-1 0.2573 -0.1749E-1 a

-0.2134E-2 -0.5889 0.3069E-2 'l

-0.4078E-1 0.3001 -0.7639E-1 6s

-0.1970E-1 0.6600E-1 0.2221E-2

0.2301 3.137 -0.2145 (A-28)
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The C; matrix is:

0.2767E-1 0.1357E-1 -0.1832 0.2226

-0.4228E-1 -0.3246E-1 0.2157 1.366

Ci x -0.4086 -0.2212 -0.7995E-2 0.1546E-1

2.1 3 0.9912 0.2776E-3 0.3343E-1

0.4128 0.2848 -0.7939E-2 0.1697E-I

j0.6222 -0.2040 0.1058E-1 -0.2820E-1

-0.1859E-1 3.339 -0.2253 -0.2936 u

-0.2395E-1 -0.2415 -0.8955 -0.3772E-1 C

1 q
I,0.2191 0.2959E-1 -0.1504E-1 0.2150 o

-3.747 0.4795 -0.2491 3.707 8

1.093 0.2318E-2 -0.1O1E-3 0.3423E-] P
r

-0.2464 -0.2907E-1 0.1439E-1 -0.2137 -L 4

(A-29)

After final review of the B matrix, it was determined that the

, signs of the lateral-directional coefficients [hl , h , ,6 fl, fr]

and the longitudinal coefficients I r (pitching moment) and 6.l,

Ss (lift) required a sign change. Also the 6a1 (pitching moment)

coefficient was corrected. The time response plots for this thesJi

were obtained using the B matrix of Equation (A-23). The following B

matrix should be used for future studies of reconfigurable multivariable
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control laws:

1 iP -16.43 -16.43 -7.506 0

-0.6730E-1 -0.6730E-1 0 -0.4788E-1

-7.955 -7.955 0 -0.3944

0 0 0 0

0 0 0.4530E-1 -0.5816E-21 8.040 -8.040 5.967 17.19

-0.6014 0.6014 -5.198 O.2985E-1

0 0 0 0

-1.260 -1.260 -9.3423 -9.3423

0.9707E-2 0.9707E-2 -0.9351E-1 -0.9351E-1

-0. 2013 -0.2013 -1.0488 -.0488

j 0 0 0 0

0.1424E-2 -0.1424E-2 0 0

-1.099 1.099 5.3212 -5.3212

-0.5335E-1 0.5335E-1 -0.1571 0.1571

0 0 0 0

(A-30)
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APPENDIX B

Introduction

At thia point, one should remember that the control surface inputs

will be separated into independent variable left and right control

surfaces. When this is done, caution must be exercised in assigning

the correct sign to the left and right contro, derivative. For

example, the derivative 1/ , the change of rolling moment due to
a

aileron deflection, is -34.4 for both surfaces. This indicates that

the right aileron is doyn and the left aileron is up causing a rolling

moment to the left. When the aileron surfaces are treated as inde-

pendent controls, the rolling moment coefficient due to the right

aileron (L' ) has a value of -17.2 and the left aileron 17.2. This
6ar

( assuvaes the sign convention is trailing edge dorn and represents a

lpe tive deflection.

This appendix presents the equations used to derive the dimensional

control derivatives and the derivation of the non-dimensional control

derivatives for non-traditional control surfaces used as input in the

aircraft equations of motion.

Dimensional Control Derivatives Equations

The equations for the longitudinal dimensional control derivatives

are, as follows:

Let X = qS/m then;

X6 = -XCDa (B-1)

Where 6 , which remains the same tor the remainder
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of the equations illustrated.

For the Z force inputs, let Z = jS/m then,

z 6  (B-2)

and for the M torque inputs, let M = jS /yy

.1 I6 =1 Em 0(B-3)

Continuing with the lateral-directional control derivatives, let

Y jS/m

y Yya -(B-4)

and for the L and N torque inputs, let L -qSb/Izz then,

La 1 (B-5)

and

SN 6 = N (B-6)

The data for use with the above equations is given in Table I, (Ref 21).
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TABLE I

Aircraft Data Cruise Configuration

ALTITUDE 15,000 ft.

MACH .6
V

WEIGHT 25,338 lbs.

e.g. 28.71% of mgc

300.88 lbs/ft

a 375 ft.

b 38.73 ft.

0 10.84 ft.

Ixx 15,365 Slug ft?

I 79,005 Slug ft.

" i- Iy 69,528 Slug ft.
yy

I -1,664 Slug ft.

4

Now the method mentioned in Chapter II is used to obtain the new non-

dimensional control derivatives.

Derivation of Non-Dimensional Control Derivatives

The control derivatives of Table II are for the aircraft at a

cruise configuration of 0.6 Mach, angle of attack at 4.20 und flying at

15K feet from the following three references: digital DATCOM (Ref 14),

A-7 Aerodynamic Data (Ref 11), and from (Ref 21). The digital DATCOM

program was used to find those non-dimensional control derivatives not

available from the other reference sources. Therefore, only those
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TABLE II

Non-Dimensional Control Derivatives*

,. LONGITUDINAL LATERAL-DIRECTIONAL

CD6  0.1146 C. 0.0

CL6h 0.29796 Cl6h -0.02827

Cm6  -0.45276 -0.01087i.. Cm~r 8hr

CD6  0.05233 Cya 0.02505

CL6 0.0 C -0.06045
r  ar

Cmar  0.0 Cnsar 0.0071

CD0.0 C0Yr 0.20055
6  0.2120 0.01902

CLear rClr

4 Cm6 -0.0229 Cn6r -0.0917
ar r

CD6s 8.7859E-3 CY6 -6.303E-3
sr r

-0.04297 C15  3.8636E-3
C6Sr 

S

Cm6r -0.01146 Cn6sr 1.910OE-3
8rr

CPS 0.06515 0.0
fr Cyfr

CL15 , 0.41399 C15  -0.01865

Cm~f -0.06024 fr 9.0879E-4

*Units rad -1 , right control surface, except rudder
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I t control derivatives found with digital DATCOM will be addressed here.

f, The following derivatives were derived using digital DATCOM: CD6 ,
,Sh

CD6r, CD6f, CL6f, f Cl6h Cn6f and C16 f since this data is not

-4

usually available from wind tunnel testing. To establir' confidence

- in this method, a comparison was done on Cn between digital DATCOM

and the A-7 aerodynamic data, which is shown later in this Appendix.

For the longitudinal mode, digital DATCOM provided tho data for the
1 following non-dimensional control derivatives: CD6h, CD6r, CD6f'

Cm6 , and CL6f . The drag for the horizontal stabilizer is usually

considered zero. But to be thorough, as many control derivatives as

possible were implemented in the aircraft equations of motion. Thus#

CD h was deriveP using the following equetion and the data is in

Table III.

CD C i ihj x

4 6h AX (B-7)

4
Whfere CD is .035 with a trim ar4le of atzack at i hT 4.35' , AX is the

change in tl'e tail incidence angle, and CDi is the drag of the unit

horizontal tail (UHT) at the incidence angle in question. The average

is then taken on the sut,,amtion of the results from th~e daa in Table III

for each angle change to dete.inine CD,. Using the average applies to

the derivation of all the remaining control derivatives that follow,

except for Cn6h and CD,, .

The derivation of CD6 reqaired that the vertical tail be modeled
r
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as a wing in order to obtain this control derivative using the following

formula.

CD _Dm
n + Di

Sr 46r 
(B-8)

Where CD, is the induced drag coefficient and CDmin is the change

I in minimum drag due to a change in control surface deflection, 6r

Table IV contains the data used to find CD

I For CD6 f change in drag due to flap deflection was found using

Equation (B-8) only 6r is now 6f. The data used in the derivation

of CD6f, CL6 , and Cm6 f is in Table IV. The following equations were

used for the derivation of CL and CM are:

44 

CL~ ACL
C

A6f

C AC

f Af 
(B-9)
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TABLE III

DATCOM Data for CD 6h and CD6r

SCD 6h CDr

Sh CD 6r CDm n  CD1

4.00 Ref 0.035 -6.0 0.00547 9.57E-6

6.0 0.039 -4.0 0.00337 3.88E-6

t 8.0 0.043 -2.0 0.00154 6.917E-7

10.0 0.047 0 0 0

i C 12.0 0.050 2.0 0.00154 1.8E-6

15.0 0.055 4.0 0.00337 6.1E-6

6.0 0.00547 1.29E-6

*Unlts deg I

I
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TABLE IV

DATC OM Data for CD6f, CL and

,4r

C CD  C L  C
S f f m f

CC
6CD CDI  CL Cm

5 0.094 -0.0137

10 0.00583 6.19E-4 0.187 -0.0273

15 0.01356 1.47E-3 0.276 -0.0402

20 0.02294 2.59E-3 0.361 -0.0526

25 0.03453 3.93E-3 0.439 -0.064

30 0.04743 5.25E-3 0.502 -0.0732

35 0.06203 6.34E-3 0.549 -0.0801

40 0.07578 7.04E-3 0.578 -0.0843

*Units deg-i

The lateral control derivatives Cl h O , and C1  were derived

with the data in Table V and the following equations:

CI = AC1

AC
C nC

A6

C AC1

A6  (B-10)
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The Cn control derivative was calculated using the following
kh

equation,

- C 1  * CDC Cit it

h CIit' 
(B-li)

where Clit 0.5937/rad, CD 0.2292/rad from (Ref 21) Pnd Clit is
It

twice C16 h  The 2 is divide through to obtain the magnitude for one

control surface and the minus sign indicates the direction of yaw with

the left UHT down.

TABLE V

* I DATCOTM Data for C 6, C 6f, and C16f

C16hC
CCn Cl

16h  6f 6
6C 16 C n 6 fC 1 f

6 h C 1f C n C1

6.8 3.329E-3 5 -1.228E-4 2.8309E-3

5.0 2.466E-3 10 -2.456E-4 5.6617E-3

0 0 15 -3.601E-4 8.3004E-3

7.5 -3.699"-3 20 -4.193E-4 9.6722E-3

10.0 -4.932E-3 25 -4.402E-4 1.0157E-3

12.5 -6.164E-3 30 -4.791E-4 1.1054E-3

15.0 -7.397E-3 35 -5.215E-4 1.2031E-3

17.5 -8.630E-3 40 -5.646E-4 1.3026E-3

20.0 -9.860E-3

22.5 -1. 11OE-2

*Units deg
-I
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TABLE VI

rData for en

Cn

S  Cn (DATCOM) Cn (Ref 2)

10 3.47E-4 3.OE-4

20 6.84E-4 7.OE-4

30 1.OE-3 1.8E-3

40 1.285E-3 2.OE-3

50 1.53E-3 2.5E-3

60 1.73E-3 3.5E-3

*Unit deg

To obtain a degree of confidence in the data being used, a compar-

ison was made between the A-7D Aerodynamic Data (Ref 11:206) and the

digital DATCOM data for C vs. 6 . The following equation, along with
n s

the data from Table "'i was used to derive Cn

C AC

sa (B-12)

Since the data of (Ref 11) for C is f'or a spoiler deflector, the
n

average valve had to be divided by a scale factor of 1.75, (Ref 14:62)

in order to obtain a Cn, for the spoiler alone. The values are

1. 1.91E-3/rad and 1.652E-3/rad for the A-7 Aerodynadc and DATCOM data
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Srespectively, with a difference of 3.58E-4/rad. This is an acceptable

difference considering the different methods used in their derivation.

The CD was de-'ed with the following equation

4
CD s

6s = -

OBS (B-13)

where b is the wing span and OBS is the out board end of the spoiler

which is 43.46% of the semispan.

This completes the derivation of the dimensional control derivative

equations, and the non-dimensional control derivatives not available in

(Ref 11) or (Ref 21). After reexamination of the CD coefficient
D r

(which may be zero), it is suggested that this control derivative be

further investigated in future studies.

1
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